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Abstract

Digitized species occurrence data provide an unprecedented source of information for ecol-

ogists and conservationists. Species distribution model (SDM) has become a popular

method to utilise these data for understanding the spatial and temporal distribution of spe-

cies, and for modelling biodiversity patterns. Our objective is to study the impact of noise in

species occurrence data (namely sample size and positional accuracy) on the performance

and reliability of SDM, considering the multiplicative impact of SDM algorithms, species spe-

cialisation, and grid resolution. We created a set of four ‘virtual’ species characterized by dif-

ferent specialisation levels. For each of these species, we built the suitable habitat models

using five algorithms at two grid resolutions, with varying sample sizes and different levels of

positional accuracy. We assessed the performance and reliability of the SDM according to

classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model

agreement metrics (Overall Concordance Correlation Coefficient and geographic niche

overlap) respectively. Our study revealed that species specialisation had by far the most

dominant impact on the SDM. In contrast to previous studies, we found that for widespread

species, low sample size and low positional accuracy were acceptable, and useful distribu-

tion ranges could be predicted with as few as 10 species occurrences. Range predictions for

narrow-ranged species, however, were sensitive to sample size and positional accuracy,

such that useful distribution ranges required at least 20 species occurrences. Against

expectations, the MAXENT algorithm poorly predicted the distribution of specialist species

at low sample size.

Introduction

Understanding spatio-temporal distribution patterns of species is fundamental for ecology,

conservation, biogeography, and many environmental studies. Species distribution model

(SDM) allows for predictions of species distributions by quantifying relationships between spe-

cies occurrence and associated environmental conditions [1–3]. SDM, which conceptually

relies on ecological niche theory, is referred to by a number of alternative names, including:
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bio-climatic envelope model, habitat suitability model, ecological niche model and resource

selection functions [2–4]. SDM is considered a powerful tool and is widely used to answer

many ecological questions, such as the distribution patterns of invasive species [5,6], species

responses to global change [7,8], identifying priority sites for conservation and suitable sites

for reintroductions [9,10], and for conservation action plans [11]. One of the most widely used

classes of SDM is a presence-background, which has been used in roughly 53% of SDM studies

published between 2008 and 2014 [1]. This presence-background model compares the envi-

ronmental conditions at the locations a species was recorded (henceforth referred to as the

‘species occurrence’) to other points (background or pseudo-absence), distributed throughout

the environmental domain [1].

The increase in applications of presence-background SDM is partially based on the

increased availability of freely accessible biodiversity data. These data provide an unprece-

dented amount of information for ecologists, conservationists, and biogeographers. However,

these data come with analytical challenges, mainly due to the often-problematic noise they

contain [12,13]. The noise in the species occurrence data originates from many sources, for

instance: 1) low sample size due to limited data availability on species distribution [14–16], 2)

low positional accuracy due to incomplete species record descriptions, digitization errors, or

geo-referencing issues [13,17–19], 3) imperfect detection and misidentification of species due

to less skilled or untrained observers [20–22], and 4) sampling bias resulting from non-system-

atic field surveys, biased data collection from relatively accessible areas, or using biased sam-

pling efforts [23–25].

The impact of sampling bias on SDM has been extensively investigated, with several sugges-

tions for bias correction [14,24–34]. The impact of sample size and positional accuracy on

SDM, however, is still very much open for debate. Several studies have explored the effect of

sample size [15,16,35–40], but despite a consensus that low sample size decreases accuracy,

there is disagreement regarding the minimum number of species occurrences necessary to

generate a useful distribution range.

Similarly, the positional accuracy of species occurrences has also been studied, however,

there is no consensus regarding its impact on SDM. Some researchers suggest excluding low

positional accuracy, while others argue that omission might negatively influence performance

by reducing sample sizes [15,16,41]. Though some studies have found that SDM is generally

insensitive to variation in positional accuracy level [12,42–45], there are others studies that dis-

agree with such findings [17,18,46,47].

The impact of noisy data on SDM, specifically sample size and positional accuracy, can

interact with other factors, such as grid resolution of the environmental data, model algorithm,

and species specialisation. Previous studies have explored the additive effects of sample size or

positional accuracy with some of these factors. For example, test combinations include the

interaction between sample size, model algorithm, and species specialisation [15,35,39], or,

sample size, model algorithm, and grid resolution of environmental data [38,42], or, positional

accuracy and model algorithm [12,44], or finally positional accuracy and properties of envi-

ronmental data [17,18,43,46]. To our knowledge, no previous study has comprehensively

investigated the interactive effect of these factors on SDM’s performance and reliability in a

single coherent framework.

The objective of this study is thus to understand the potentially interactive effects of sample

size and positional accuracy of species occurrences, grid resolution of environmental data, spe-

cies specialisation and niche modelling algorithms that typically affect empirical species distri-

bution studies. We investigated the potential effects by modelling species distribution using a

variety of modelling tools for four ‘virtual’ species characterized by different specialisation lev-

els, each sampled with different intensities and different positional accuracies and modelled
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with different resolutions of environmental information. This allowed us to disentangle the

effects of the various parameters without bias by assess performance against a known distribu-

tion range, which is near-impossible for real species. For each of our four species, we built suit-

able habitat models using five SDM algorithms and two grid resolutions each based on a

varying number of species occurrences and with different levels of positional accuracy. We

then investigated the subsequent variation in SDM performance and reliability. We assessed

the outcome of the SDM based on classic model evaluation metrics (threshold-dependent and

-independent), which are typically used in empirical studies because the actual distribution of

the species in focus are unknown. However, unlike empirical species distribution studies, we

“know” the real distributions, and can therefore directly measure the agreement between the

SDM’s predictions and the “true” ranges; our actual goal for the modelling exercises.

Materials and methods

Our analysis followed three steps: 1) creating ranges for four virtual species, 2) modelling spe-

cies distribution ranges following the usual routine for each of the four species by sampling

species occurrences from these ranges with different levels of positional accuracy, associating

them with environmental information, and fitting species distribution models, and finally, 3)

assessing SDM performance and reliability (Fig 1).

Generating virtual species ranges

We based our analyses on species with known distribution ranges for unbiased model quality

evaluation. To this end, we created ranges for the virtual species (henceforth referred to as the

‘“true” range’) using four environmental variables: 1) annual mean temperature, 2) altitude, 3)

precipitation seasonality, and 4) annual mean evapo-transpiration. These environmental vari-

ables are widely considered to have a direct influence on the eco-physiology and niche of

many species [16,48–51]. We downloaded these environmental variables at two resolutions,

2.5 and 10 arc-min, (the source of these variables in Table A in S1 Appendix). Variables only

available only in higher resolution were downscaled to 2.5 and 10 arc-min resolutions using

bilinear interpolation. We conducted a Principal Component Analysis (PCA) on these four

environmental variables, and in order to avoid unrealistic distribution ranges due to species

response to each of the four variables, we chose the first two PCs summarizing the environ-

mental variability across the study area [52,53]. This is an objective and realistic approach and

ensures that the ranges of the virtual species were delineated based on realistic environmental

variables [27,52,53]. We defined the environmental range inhabited by the species based on

the mean ± standard deviation (S.D.) for each of the first two axes of the PCA using a Gaussian

distribution function. [16,27,54–56]. We then set the mean value (optimum of the environ-

mental range) of the first two axes of the PCA at (0,0) for all species, and determined the degree

of specialisation by adjusting the S.D. values of the first two axes of the PCA according to the

species specialisation. The generalist species were characterized by low specialisation covering

80% (S.D. 0.8) of the environmental range. The restricted generalist, relaxed specialist and spe-

cialist species had ranges covering 60%, 40% and 20% of the environmental range respectively

(Fig A in S1 Appendix).

The overall environmental suitability of each virtual species was computed by using the

multiplicative approach, multiplying the output of the Gaussian distribution function of each

of the first two PCs. We considered this approach to be more realistic, since it accurately repre-

sents the interaction between the environmental variables. For example, if one environmental

variable was very unfavourable at a given location, the species’ probability of occurrence will

be low overall, despite the other variables being close to the species’ optimum [27,51,54,57,58].
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Fig 1. Flow diagram explaining the study design used to answer the study questions. The first step uses the first two axes

of PCA and a Gaussian distribution function to create the four virtual species by adjusting the standard deviation (S.D.) value

according to the species specialisation level. The second step shows the modelling process for these four species using five

modelling algorithms with different sample sizes and different levels of positional accuracy (one precise and three increasingly
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Finally, the defined environmental ranges were projected onto the world at the African conti-

nental scale at two different grid resolutions: 10 arc-min, representing the low resolution (spa-

tial unit size� 400 km2), and 2.5 arc-min, representing the high resolution (spatial unit size�

25 km2) (Fig A in S1 Appendix). We used the “virtualspecies” R package to generate these four

virtual species [52].

Sampling species occurrences and introducing different positional

accuracy levels

The threshold approach is widely used in simulation studies, where a fixed threshold is being

selected to convert the probability of occurrence into a binary presence–absence map

[27,52,59–61]. This threshold is arbitrarily selected since there are no objectively justifiable

threshold values based on the data and/or on the validation values (e.g. sensitivity and specific-

ity) [27]. However, using the threshold approach is problematic and has been criticized for

numerous reasons: 1) it maximises the omission and commission errors rate in species occur-

rences, 2) it alters the predefined species-environment relationship and, 3) it is inappropriate

for many of the regression models that rely on logistic functions, which in turn might provide

misleading results [52,59]. To mitigate these issues, we used the threshold and probability

based approaches together. First, we selected arbitrarily a threshold of 0.2 to convert the proba-

bility map into a binary, presence-absence map. Next, from the corresponding probability

map, we used the values of the probabilities of occurrence in each pixel as the success rate for

one sample of the binomial distribution (i.e. a pixel with a probability of 0.8 has an 80% chance

of being occupied by species) [4,27,62]. In practice, for each pixel in the presence area in the

binary map we generated a random value (r) on the interval [0,1], where a pixel was considered

“present” if its r value was greater than its probability of occurrence. Similarly, the absence

data was obtained by drawing pixels from the absence area in the binary map, where a pixel

was considered “absent” if its r value was less than its probability of occurrence. This resulted

in pixels with higher suitability to be more likely to be identified as “present” and pixels with

lower suitability more likely identified as “absent” [4,18,27,51,59,62,63]. Thus, we tried to min-

imize the omission and commission error in species occurrences.

Next, we shifted the sampled species occurrences in a random direction to introduce four

levels of positional accuracy [12,17,43,64]. To this end, we created four buffer areas around

each occurrence and randomly sampled occurrence outside the buffer area to represent four

levels of positional accuracy: 1) precise, where the buffer area size was zero to represent no

change in the positional accuracy, 2) low imprecision, where the buffer area size was equal to

one pixel, corresponding to� 6 km at the high resolution and� 20 km at the low resolution,

3) intermediate imprecision, where the buffer size was equal to two pixels, 4) high imprecision,

where the buffer size was equal to three pixels.

Modelling framework

Environmental variables. We followed the standard SDM’s routines for selecting the pre-

dictors, where typically the causal relationship between occurrence and environmental condi-

tions is unknown. We do acknowledge that a poor choice of predictors is another common

source of uncertainty in SDM’s studies. However, our objective here is to mimic the empirical

imprecise levels) and two raster resolutions (high and low). The third step shows the evaluation procedure for model prediction

based on the spatial agreement (reliability) and statistical performance (Area Under the Curve AUC and True Skill Statistics

TSS).

https://doi.org/10.1371/journal.pone.0187906.g001
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SDM’s routines and assess how far predictions are from the reality under realistic conditions

irrespective of the appropriateness of choosing the right set of predictors (which most empiri-

cal studies also are unaware of to begin with). We therefore selected 19 climatic predictors, two

topographic predictors, five vegetation predictors, and one aridity variable to model distribu-

tion ranges at our two grid resolutions. We reduced the number of predictors by calculating

the Variance Inflation Factor (VIF); a measure for collinearity. We removed collinearity by

eliminating predictors with VIF scores greater than 10 [65], using the “vifstep” function in the

“usdm” R package [66]. Finally, 15 predictors remained to build the SDM (Table A in S1

Appendix), which was sufficient to avoid model over-fitting and develop an accurate SDM

[67]. We rescaled all predictors to the two different grid resolutions we used in our study (2.5

and 10 arc-min) using bilinear interpolation [68].

SDM algorithms. We modelled the ranges of each species using five commonly used algo-

rithms that are either regression-based or machine learning-based approaches. We used two

algorithms from the regression-based approaches: the Generalized Linear Model (GLM)

[69,70], a widely used linear regression method, and the Generalized Additive Model (GAM)

[70,71], a closely related method allowing for non-linear relationships. We used three imple-

mentations of machine learning-based approaches: Generalized Boosted Model (GBM) [72],

Random Forest (RF) [73] and Maximum Entropy Modelling (MAXENT) [68,74], which char-

acterize the environmental space directly from calibration data [67]. We fitted the models

using the “Biomod2” R package [75].

Modelling procedure. To determine the acceptable minimum number of species occur-

rences, we calibrated the SDM for each species at the two grid resolutions using the five algo-

rithms with different sample sizes (5, 10, 20, 50, 100 and 200 occurrences) with five-fold cross-

validation and five replicates, where each replicate used a different background set, i.e., each

model ran 25 times. We acknowledge that using species-specific model parameter tuning is

recommended [76], however, to avoid an overwhelming complexity of the study outcome and

also for the benefit of a better comparison between the algorithms, we decided to keep the

default settings of the respective SDM algorithms (Table B in S1 Appendix). To determine the

acceptable level of the positional accuracy of species occurrences, we repeated the procedure as

described using imprecise occurrences (low, intermediate, and high) to compare with precise

occurrences (Fig 1).

Model evaluations

Model evaluation is a crucial step in model selection and assessing the accuracy of the predic-

tion [77]. In general, model accuracy is measured mainly through evaluation and agreement

metrics [78,79]. Evaluation metrics are widely used to measure model performance through

assessing the ability of a model to distinguish between presence and absence locations correctly

[78,79]. Agreement metrics, however, measure prediction reliability by assessing the spatial

agreement between the “true” and predicted ranges taking into account the probability values

of pixels. In other words, reliability can be used to inform how far the predicted ranges are

from the truth or “reality” [78,79]. Using different evaluation metrics is strongly preferred

when true absence data are unavailable, and also when the goal is to model potential distribu-

tion ranges rather than realized ranges [80]. Therefore, we calculated the area under the curve

(AUC) of the receiver operating characteristic (ROC), as well as the True Skill Statistic (TSS)

to evaluate the predictive performance of the models. The AUC value (a threshold-indepen-

dent evaluation metric) ranges from 0 to 1, with values below 0.5 indicating performance no

better than random, whereas a value of 1 indicates perfect performance [77]. TSS value (a

threshold-dependent evaluation metric) varies from -1 to 1, where a value of 1 indicates perfect

Reliability in species distribution modelling
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model performance, and a value lower than or equal to zero indicates a model performance no

better than random [81]. In this study, we considered the models with either median AUC

value� 0.7 or median TSS value� 0.4 as good models with usefully predictive distribution

ranges (successfully able to discriminate the suitable from unsuitable areas) [43,82–85]. We

used the “Biomod2” R package [75] to calculate the evaluation metrics (AUC and TSS) for

each SDM internally as usually done in empirical studies (henceforth referred to as ‘standard

AUC’ and ‘standard TSS’). Additionally, we evaluated the SDM by calculating AUC and TSS

using independent data (presence and “true” absences) sampled from the true ranges (hence-

forth referred to as “independent AUC” and “independent TSS”). We calculated these inde-

pendent metrics using the “accuracy” function in the “SDMTools” R package [86]. We

compared the differences between the independent evaluation and 25 model evaluation met-

rics using one-sample Wilcoxon test using the “stats” R package [87]. To test whether the grid

resolutions of the environmental predictors influenced model performance, we assessed the

differences between the standard evaluation metric (standard AUC and standard TSS) values

at the high and low grid resolutions for all models using two-sample non-parametric Wilcoxon
test.

We assessed the interaction of spatial resolution, SDM algorithm, positional accuracy, sam-

ple size, and species specialisation on SDM’s performance using generalised linear models. We

fitted two models, first fitting the exponentially transformed AUC as a function of spatial reso-

lution, the SDM algorithm, positional accuracy, sample size, and species specialisation. In a

second model, we additionally included the two-way interaction of these factors. We used the

Akaike Information Criterion (AIC) to select the most parsimonious model favouring a low

AIC value [88].

Measuring spatial agreement. We measured relative agreement between “true” and mod-

elled ranges by calculating their geographical niche overlap. We calculated Schoener's D index

[89] using the “nicheOverlap” function in the “dismo” R package [90]. The niche overlap value

varies between 0 and 1, where the value of 0 indicates no overlap and value of 1 indicates com-

plete overlap [91,92]. Additionally, we measured the absolute agreement between the “true”

and modelled ranges through a pixel wise comparison using the Overall Concordance Correla-

tion Coefficient (OCCC), a measure of agreement between two continuous datasets which

were generated using two different approaches [93]. We computed the OCCC using the

“epiR” R package [94]. The OCCC value varies between 0 and 1, with 0 representing 100% dis-

agreement and 1 represents 100% agreement between the true and predicted ranges (See S2

Appendix for details).

Results

Minimum sample size of species occurrences required for SDM

prediction

Our results revealed inconsistencies between the evaluation and agreement metrics regarding

the minimum sample size of species occurrences required for SDM. The evaluation metrics

showed that MAXENT was the only algorithm that successfully modelled the distribution

range with five species occurrences regardless of the species specialisation. In contrast, GAM

failed to successfully model the distribution ranges with fewer than 50 species occurrences.

Though GLM, GBM, and RF required minimum 20 species occurrences to successfully model

the distribution ranges for generalist and restricted generalist species, only five species occur-

rences were required for successful modelling of relaxed specialist and specialist species (Fig 2

and Figs B–D in S1 Appendix).
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In contrast, the agreement metrics showed that both MAXENT and GLM required a mini-

mum of 10 species occurrences to model the ranges of generalist and restricted generalist spe-

cies to� 50% agreement with the “true” ranges. However, for specialist and relaxed specialist

species, MAXENT required 50 occurrences to achieve� 40% agreement with the “true”

ranges, and GLM failed to achieve a similar agreement, even with 200 occurrences. Both GBM

and RF required a minimum of 20 occurrences to achieve� 45% agreement with the “true”

ranges, whereas, for generalist and restricted generalist species RF could not achieve 40%

agreement even with 100 occurrences (Fig 3 and Figs E–L, and P in S1 Appendix).

These findings are indicative of the presence of the interactive effect of species specialisation

and the SDM algorithms on the number of species occurrence required for SDM, where, the

number of species occurrences required for a good SDM varied according to the species spe-

cialisation and the type of algorithm used (Figs 2 and 3 and Figs B–D, O and P in S1

Appendix).

Fig 2. The inter-quantile range of the standard True Skill Statistic (TSS) at high grid resolution. This plot shows the variation in model

performance for four species (row-wise) with increasing the sample size (x axis) using five different SDM algorithms (column-wise). The dashed

line represents the threshold line, where median values above this line indicate good performance.

https://doi.org/10.1371/journal.pone.0187906.g002
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Our results suggested statistically significant differences between the standard and indepen-

dent evaluation metrics according to the Wilcoxon test, however, the magnitude of these differ-

ences were relatively small, implying that these two metrics are practically similar (Tables C–F

and Figs M and N in S1 Appendix).

Our results also revealed that grid resolution had no considerable effect on SDM compared

to species specialisation and model algorithm (Fig 3 and Figs O and P in S1 Appendix).

Fig 3. The agreement index. The spatial agreement between the predicted ranges with precise species occurrences and the predicted ranges with

imprecise species occurrences for four different species at high and low grid resolutions–according to Overall Concordance Correlation Coefficient (OCCC)

index. The y-axis is scaled from 0 to 1, where 0 means no agreement and 1 is 100% agreement. Solid lines represent low grid resolution and dashed lines

represent high resolution. Line colour denotes the precision levels of the species occurrences, where the black line denotes precise species occurrence, the

blue line denotes low imprecise, the green line denotes intermediate imprecise, and the red line denotes highly imprecise species occurrences.

https://doi.org/10.1371/journal.pone.0187906.g003
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Although there was a statistical difference between the high and low grid resolutions, this effect

size was relatively small (Tables G and H in S1 Appendix). Moreover, the difference was not

consistent: in some cases, models at high grid resolution performed better than those based on

low grid resolution, whilst in other cases models using low grid resolution performed better.

Impact of positional accuracy of species occurrences on performance of

SDM

The models based on precise species occurrences tended to perform slightly better than those

based on imprecise occurrences (low, intermediate and high). However, in some instances,

when low sample sizes were used the models based on the imprecise species occurrences out-

performed those based on precise occurrences. Models fitted with imprecise species occur-

rences had a clear tendency to reduce SDM performance in relaxed specialist and specialist

species, which disappeared with sample sizes above 20 occurrences (Fig 4 and Fig O in S1

Appendix).

The result of the linear models indicates a significant influence of the interaction between

spatial resolution, SDM algorithm, positional accuracy, sample size, and species specialisation

on the SDM’s performance (delta AIC >5000). Species specialization and sample size were the

most influential variables (in terms of the effect size), whereas spatial resolution and positional

accuracy were the least influential variables (Table 1). The full set of the explanatory variables

modelled is presented in supplementary file (Table I in S1 Appendix).

Impact of positional accuracy of species occurrences on reliability of

SDM

Both niche overlap and OCCC indicated a strong spatial agreement between ranges modelled

with precise and imprecise species occurrence data for generalist and restricted generalist spe-

cies. This agreement weakened with decreasing positional accuracy, and increasing specialisa-

tion. Moreover, this agreement also weakened with increasing numbers of imprecise species

occurrences, and differences were more pronounced at low grid resolution (Fig 3 and Fig P in

S1 Appendix). These findings were consistent across the five algorithms. In general, our results

suggest an interaction between sample size and positional accuracy, SDM algorithms, species

specialisation, and grid resolutions on the reliability of SDM.

Discussion

Our comprehensive analysis uncovered how the sample size and positional accuracy of species

occurrences, model algorithms, grid resolution, and species specialisation affected SDM per-

formance and reliability. We showed that species specialisation had by far the most dominant

impact, where the algorithm performance and the effect of sample size and positional accuracy

of species occurrences depended most on species specialisation (Fig 5). These conclusions are

based on ecological reliability and spatial agreement, rather than statistical performance in

modelling the data itself. The impact of grid resolution on the SDM’s reliability only became

important with imprecise species occurrences when modelling highly specialized species (See

S3 Appendix for more details on the impact of grid resolution on SDM). Our results also

revealed that metrics of model performance can be misleading in representing the actual per-

formance, if matching the true distribution was the goal.

We corroborate previous studies that found model performance and reliability improves

with increasing sample size [15,16,35,38,39,78,95]. Nonetheless, useful distribution ranges for

widespread and narrow-ranged species could be achieved with as few as 10 or 20 species

Reliability in species distribution modelling
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Fig 4. True Skill Statistic (TSS) for the models fitted with precise and imprecise occurrences. The

variation between the performance of SDMs fitted with precise and imprecise species occurrences with different

sample size (x axis) using five different SDM algorithms (column-wise) for four species with difference

specialisation levels (row-wise). Line colour represents the precision levels of the species occurrences. Solid

lines represent low grid resolution, and dashed lines represent high resolution. Dotted line is the threshold value

below which poor model performance is indicated.

https://doi.org/10.1371/journal.pone.0187906.g004

Table 1. Result of the linear model analysis investigating determinants of area under the receiver operating characteristic curve (AUC) values.

Exponentially transformed AUC values were modelled as a function of spatial resolution, SDM algorithm, positional accuracy, sample size, and species spe-

cialisation. Akaike Information Criterion (AIC) showed that the full model with interaction was the less parsimonious model with AIC = -66657.46.

Degree of freedom Delta AIC Adjusted R-squared

Full model with interaction 961 0 0.578

Full model without interaction 18 5002.8 0.458

- Spatial resolution 1 5014.46 0.458

- Positional accuracy 3 5222.46 0.371

- Algorithm 4 8542.46 0.453

- Species specialisation 3 10101.46 0.221

- Sample size 5 13622.46 0.328

https://doi.org/10.1371/journal.pone.0187906.t001
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occurrences respectively. In contrast to previous studies [15,16,35,38,39,41,96–103], our result

indicates that the ranges of the less specialized species are in fact easier to predict than those of

highly specialized species. These previous studies based their conclusions on SDM’s perfor-

mance measured by the values of sensitivity and specificity, where the species ranges with low

performance values were considered more difficult to predict. Together with other studies

[80,104,105], we showed that this might not be always true, since SDM performance was

strongly influenced by species specialisation and the size of the study area. Recently, a study

evaluated SDM performance in response to the size of the buffer area (0–60%; 0% buffer, all

background data were drawn from presence domain) surrounding the species range, and

found that performance in ranges with buffer areas of� 5% was no better than random, while

increasing the size of the buffer area around the same range increased the performance value

[48]. Accordingly, the evaluation metrics such as AUC and TSS could be more informing

about how broadly the modelled species is distributed across the study area rather than inform

about SDM performance [104,105]. Our results, in line with other studies [80,104,106,107],

emphasize that standard evaluation metrics should not be used to compare performance

between different species, nor within the same species when using different SDM settings

The minimum sample size required for a useful SDM varied according to species specialisa-

tion and the SDM algorithm. In generalist and restricted generalist species, both MAXENT

and GLM predicted useful distribution ranges with as few as 10 species occurrences. In relaxed

specialist and specialist species, the optimal minimum number was 20 using GBM and RF.

While many studies have explored the impact of the number of species occurrences on SDM,

until now this issue has remained unresolved. For example, using GARP, Stockwell and Peter-

son [35] suggested 10 species occurrences as minimum sample sizes, Papeş and Gaubert [37]

suggested 15 using MAXENT, Drake et al. [36] suggested 40 using Support Vector Machine,

and both Drake et al. [36] and Wisz et al. [38] suggested over 30 using GAM, GBM and MAX-

ENT. Although many studies used the same algorithm, namely MAXENT, the results were

inconsistent. This could be because the conclusions were based on SDM’s performance and

Fig 5. Framework demonstrates the factors that need to be considered depending on the

characteristics of species specialisation. The number represents the minimum sample size of

occurrences that is needed to model the SDM according to the positional accuracy of species occurrences

and algorithm type.

https://doi.org/10.1371/journal.pone.0187906.g005
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ignored species specialisation. Only two studies considered species specialisation in their anal-

yses, and both concluded that for narrow-ranged species, five species occurrences sufficed

[15,16].

Several studies have shown that MAXENT stands out as the single best SDM algorithm

[15,16,38,108], however, our results were not unanimous and revealed variation according to

species specialisation and the number of occurrences. For example, at a high number of species

occurrences (� 50) this algorithm outperformed the others across all species specialisation lev-

els. At low number of occurrences (< 50), however, MAXENT underperformed in relaxed

specialist and specialist species, and outperformed the other algorithms in generalist and

restricted generalist species. We relate this variability to the differences in SDM algorithms,

where, in contrast to the other algorithms, MAXENT and GLM had a tendency to over-predict

(over-estimate the range occupied by a species) when fitted with a low number of occurrences

(Figs E–L in S1 Appendix). As a result, the predicted ranges using MAXENT and GLM based

on low numbers of occurrences resulted in a distribution range with a widespread probability

surface (as a result of over-prediction). This widespread probability surface causes a good

agreement with the “true” ranges for the wide spread species and poor agreement for the nar-

row-ranged species.

Our results revealed that the impact of the positional accuracy of species occurrences on

SDM’s performance was relatively small across all species, where, in many cases, the models

based on precise occurrences were only slightly better than those based on imprecise occur-

rences. These findings are in line with previous studies concluding that SDM is generally less

sensitive to the levels of positional accuracy of species occurrences [12,43,44]. However, con-

sulting the spatial agreement metrics revealed that the previous conclusion might not always

be true, and that the sensitivity of SDM to the positional accuracy of species occurrences also

depends on species specialisation and sample size. For generalist and restricted generalist spe-

cies, the impact of species positional accuracy on SDM’s reliability was relatively small across

all algorithms. However, the relaxed specialist and specialist species were in fact sensitive to

the positional accuracy of the species occurrences. This sensitivity increased with increasing

numbers of imprecise species occurrences and at low grid resolution. The sensitivity of special-

ised species to the level of positional accuracy could be due to the increased likelihood of

assigning the imprecise species occurrences to unsuitable areas, whereas, in generalist species

this likelihood is inherently lower. Accordingly, our results highlight the importance of invest-

ing time and effort into improving the positional accuracy of species occurrences for species

with narrow distribution ranges, when modelling putative ecological specialists. However, for

widespread species we believe that positional accuracy of species occurrence will have minimal

effect on the reliability of SDM. This increases the relevance of data available in museums and

online portals, especially for widespread species.

The sample size and positional accuracy of species occurrence data that can be used in

SDM inherently varies according to the objective of the study. For example, if the goal is to

define the environmental conditions that limit the distribution of a focal species, using high

sample size and high positional accuracy may be necessary to minimize the commission error

[109]. By contrast, if practitioners are interested in discovering a new population of a poorly

known species, using high sample size and positional accuracy species occurrence data may

not be crucially important. Therefore, defining the objective and the goal of the SDM is critical

for achieving reliable conclusions in conjunction with a minimum amount of prior informa-

tion about the species in question [109].

We have shown that species specialisation is the key factor with a dominant influence on

SDM, which is usually unknown and/or not considered in species distribution models a-priori,

while the spatial grid resolution has no considerable impact on SDM. We can conclude that

Reliability in species distribution modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0187906 November 13, 2017 13 / 19

https://doi.org/10.1371/journal.pone.0187906


www.manaraa.com

narrow-ranged species are likely to be more sensitive than widespread species to changes in

the level of positional accuracy of species occurrence and sample size. More important, we

have also found that a high SDM performance does not always also imply a high reliability. In

addition to our study and previous work, further effort needs to be directed towards investigat-

ing the impact of sample size and positional accuracy of species occurrences on: 1) SDM vari-

ables contribution, and 2) SDM transferability (spatial and temporal). Finally, it would be

beneficial to explore the impact of using mixed levels of positional accuracy on SDM’s reliabil-

ity. The work-flow (Fig 5) we provide should help other researchers to select the most appro-

priate approach according to the characteristic of the available data in the quest to make the

best use of the data available in species distribution modelling studies.

Supporting information

S1 Appendix. Additional figures and tables.

(DOC)

S2 Appendix. Overall concordance correlation coefficient.

(DOC)

S3 Appendix. The impact of the grid resolutions on SDMs outcomes.

(DOC)

Acknowledgments

We appreciate the help and valuable comments from Bart Kranstauber, Mariëlle van Toor,
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